Search results for "Robust Statistics"

showing 10 items of 15 documents

How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment

2016

This study aims to assess the relationship between Leaf Area Index (LAI) and remotely sensed Vegetation Indices (VIs) for major crops, based on a globally explicit dataset of in situ LAI measurements over a significant set of locations. We used a total of 1394 LAI measurements from 29 sites spanning 4 continents and covering 15 crop types with corresponding Landsat satellite images. Best-fit functions for the LAI-VI relationships were generated and assessed in terms of crop type, vegetation index, level of radiometric/atmospheric processing, method of LAI measurement, as well as the time difference between LAI measurements and satellite overpass. These global LAI-VI relationships were evalu…

Agroecosystemagroecosystem modeling010504 meteorology & atmospheric sciencesMean squared error0211 other engineering and technologiesRobust statisticsLAI; Vegetation Index; agriculture; Landsat; agroecosystem modeling02 engineering and technologyCrop01 natural sciencesUniversalityNormalized Difference Vegetation IndexArticleLAI-VI relationshipLeaf area indexlcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensingagriculture2. Zero hungerGlobalEnhanced vegetation index15. Life on landLAIGeneral Earth and Planetary Scienceslcsh:QSymbolic regressionLandsatAgricultural landscapesVegetation Index
researchProduct

Stochastic algorithms for robust statistics in high dimension

2016

This thesis focus on stochastic algorithms in high dimension as well as their application in robust statistics. In what follows, the expression high dimension may be used when the the size of the studied sample is large or when the variables we consider take values in high dimensional spaces (not necessarily finite). In order to analyze these kind of data, it can be interesting to consider algorithms which are fast, which do not need to store all the data, and which allow to update easily the estimates. In large sample of high dimensional data, outliers detection is often complicated. Nevertheless, these outliers, even if they are not many, can strongly disturb simple indicators like the me…

Stochastic AlgorithmsAlgorithmes StochastiquesAlgorithmes RécursifsRecursive AlgorithmsStatistique RobusteAlgorithmes de Gradient StochastiquesAveragingStochastic Gradient AlgorithmsMoyennisationGrande DimensionRobust StatisticsFunctional DataDonnées Fonctionnelles[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST]Geometric MedianHigh DimensionMédiane Géométrique
researchProduct

Application of a Knowledge Discovery Process to Study Instances of Capacitated Vehicle Routing Problems

2020

Vehicle Routing Problems (VRP) are computationally challenging, constrained optimization problems, which have central role in logistics management. Usually different solvers are being developed and applied for different kind of problems. However, if descriptive and general features could be extracted to describe such problems and their solution attempts, then one could apply data mining and machine learning methods in order to discover general knowledge on such problems. The aim then would be to improve understanding of the most important characteristics of VRPs from both efficient solution and utilization points of view. The purpose of this article is to address these challenges by proposi…

autoencoderreititysbusiness.industryComputer scienceProcess (engineering)capacitated vehicle routing problemsfeature extractionFeature extractionLogistics managementknowledge discoveryRobust statisticsMachine learningcomputer.software_genreAutoencoderkoneoppiminenKnowledge extractionoptimointirobust statisticsVehicle routing problemlogistiikkaGeneral knowledgeArtificial intelligencetiedonlouhintabusinesscomputer
researchProduct

An empirical test of marginal productivity theory

2014

We explore an hitherto unused approach to testing marginal productivity theory. Our method rests on the simple idea that, under the assumption of a linear homogeneous production function, residual profits are informative about the discrepancies between factor payments and marginal products. Our empirical application using data on manufacturing plants in Chile suggest moderate deviations from marginal productivity theory which depend on firm size.

Economics and EconometricsEmpirical researchMarginal profitRobust statisticsMarginal productEconomicsEconometricsPartial productivityProduction (economics)Function (mathematics)ResidualApplied Economics
researchProduct

A vision-based fully automated approach to robust image cropping detection

2020

Abstract The definition of valid and robust methodologies for assessing the authenticity of digital information is nowadays critical to contrast social manipulation through the media. A key research topic in multimedia forensics is the development of methods for detecting tampered content in large image collections without any human intervention. This paper introduces AMARCORD (Automatic Manhattan-scene AsymmetRically CrOpped imageRy Detector), a fully automated detector for exposing evidences of asymmetrical image cropping on Manhattan-World scenes. The proposed solution estimates and exploits the camera principal point, i.e., a physical feature extracted directly from the image content th…

Robust computer visionExploitComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONRobust statisticsImage processing02 engineering and technologyCropping detectionMultimedia forensicRobustness (computer science)0202 electrical engineering electronic engineering information engineeringMultimedia Forensics Robust Computer Vision Cropping Detection Image Content AnalysisComputer visionElectrical and Electronic EngineeringSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSettore INF/01 - InformaticaVision basedbusiness.industryDetectorImage content analysi020206 networking & telecommunicationsFully automatedSignal Processing020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionArtificial intelligencebusinessCroppingSoftwareSignal Processing: Image Communication
researchProduct

Student agency analytics: learning analytics as a tool for analysing student agency in higher education

2020

This paper presents a novel approach and a method of learning analytics to study student agency in higher education. Agency is a concept that holistically depicts important constituents of intentional, purposeful, and meaningful learning. Within workplace learning research, agency is seen at the core of expertise. However, in the higher education field, agency is an empirically less studied phenomenon with also lacking coherent conceptual base. Furthermore, tools for students and teachers need to be developed to support learners in their agency construction. We study student agency as a multidimensional phenomenon centring on student-experienced resources of their agency. We call the analyt…

oppiminenHigher educationLearning analytics02 engineering and technologyArts and Humanities (miscellaneous)020204 information systems0502 economics and businessAgency (sociology)ComputingMilieux_COMPUTERSANDEDUCATION0202 electrical engineering electronic engineering information engineeringDevelopmental and Educational PsychologySociologylearning analyticsopiskelijatbusiness.industry05 social sciencesGeneral Social SciencestoimijuusData scienceHuman-Computer Interactionkoneoppiminenrobust statisticsAnalyticsstudent agency050211 marketingbusinessBehaviour & Information Technology
researchProduct

Comparison of Internal Clustering Validation Indices for Prototype-Based Clustering

2017

Clustering is an unsupervised machine learning and pattern recognition method. In general, in addition to revealing hidden groups of similar observations and clusters, their number needs to be determined. Internal clustering validation indices estimate this number without any external information. The purpose of this article is to evaluate, empirically, characteristics of a representative set of internal clustering validation indices with many datasets. The prototype-based clustering framework includes multiple, classical and robust, statistical estimates of cluster location so that the overall setting of the paper is novel. General observations on the quality of validation indices and on t…

Fuzzy clusteringlcsh:T55.4-60.8Computer scienceSingle-linkage clusteringCorrelation clustering02 engineering and technologycomputer.software_genrelcsh:QA75.5-76.95Theoretical Computer Scienceprototype-based clusteringCURE data clustering algorithm020204 information systemsprototype-based clustering; clustering validation index; robust statisticsConsensus clusteringalgoritmit0202 electrical engineering electronic engineering information engineeringlcsh:Industrial engineering. Management engineeringCluster analysisk-medians clusteringta113Numerical Analysisbusiness.industryPattern recognitionDetermining the number of clusters in a data setComputational MathematicsComputingMethodologies_PATTERNRECOGNITIONComputational Theory and Mathematicsrobust statistics020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceArtificial intelligenceData miningtiedonlouhintabusinessclustering validation indexcomputerAlgorithms
researchProduct

Robust estimation and inference for bivariate line-fitting in allometry.

2011

In allometry, bivariate techniques related to principal component analysis are often used in place of linear regression, and primary interest is in making inferences about the slope. We demonstrate that the current inferential methods are not robust to bivariate contamination, and consider four robust alternatives to the current methods -- a novel sandwich estimator approach, using robust covariance matrices derived via an influence function approach, Huber's M-estimator and the fast-and-robust bootstrap. Simulations demonstrate that Huber's M-estimators are highly efficient and robust against bivariate contamination, and when combined with the fast-and-robust bootstrap, we can make accurat…

Statistics and ProbabilityHeteroscedasticityAnalysis of VarianceCovariance matrixRobust statisticsEstimatorGeneral MedicineBivariate analysisCovarianceBiostatisticsStatistics::ComputationEfficient estimatorPrincipal component analysisStatisticsEconometricsStatistics::MethodologyBody SizeStatistics Probability and UncertaintyMathematicsProbabilityBiometrical journal. Biometrische Zeitschrift
researchProduct

Sample-size calculation and reestimation for a semiparametric analysis of recurrent event data taking robust standard errors into account

2014

In some clinical trials, the repeated occurrence of the same type of event is of primary interest and the Andersen-Gill model has been proposed to analyze recurrent event data. Existing methods to determine the required sample size for an Andersen-Gill analysis rely on the strong assumption that all heterogeneity in the individuals' risk to experience events can be explained by known covariates. In practice, however, this assumption might be violated due to unknown or unmeasured covariates affecting the time to events. In these situations, the use of a robust variance estimate in calculating the test statistic is highly recommended to assure the type I error rate, but this will in turn decr…

Statistics and ProbabilityInflationComputer sciencemedia_common.quotation_subjectRobust statisticsGeneral MedicineVariance (accounting)Sample size determinationStatisticsCovariateTest statisticEconometricsStatistics Probability and UncertaintyType I and type II errorsEvent (probability theory)media_commonBiometrical Journal
researchProduct

Empirical Likelihood-Based ANOVA for Trimmed Means

2016

In this paper, we introduce an alternative to Yuen’s test for the comparison of several population trimmed means. This nonparametric ANOVA type test is based on the empirical likelihood (EL) approach and extends the results for one population trimmed mean from Qin and Tsao (2002). The results of our simulation study indicate that for skewed distributions, with and without variance heterogeneity, Yuen’s test performs better than the new EL ANOVA test for trimmed means with respect to control over the probability of a type I error. This finding is in contrast with our simulation results for the comparison of means, where the EL ANOVA test for means performs better than Welch’s heteroscedastic…

HeteroscedasticityHealth Toxicology and MutagenesisPopulationRobust statisticslcsh:Medicineempirical likelihood01 natural sciencesArticletrimmed means010104 statistics & probabilityF-testStatisticshypothesis testing0101 mathematicseducationMathematicseducation.field_of_studyANOVA010102 general mathematicslcsh:RANOVA; empirical likelihood; trimmed means; robust statistics; hypothesis testingPublic Health Environmental and Occupational HealthNonparametric statisticsTruncated meanBrown–Forsythe testEmpirical likelihoodrobust statisticsInternational Journal of Environmental Research and Public Health; Volume 13; Issue 10; Pages: 953
researchProduct